НОВАЯ ВЕРСИЯ КРЕДО РАДОН 4.1

Состоялся выпуск новой версии программы для расчета дорожных одежд КРЕДО РАДОН 4.1. В версии реализована поддержка нового нормативного документа ПНСТ 542-2021 «Дороги автомобильные общего пользования. Нежесткие дорожные одежды. Правила проектирования». Новый стандарт основан на действующем ранее документе ПНСТ 265-2018, но имеет ряд существенных отличий.

Ниже будут приведены лишь самые значимые и интересные, с точки зрения разработки, изменения:

Общее

- 1. Из области применения ПНСТ 542-2021 исключены автомобильные дороги V категории, на которые распространяются требования для дорог с низкой интенсивностью движения.
- 2. Добавлены расчетные характеристики для материалов слоев оснований по новым ГОСТ Р и ПНСТ, уточнены модули упругости материалов (в частности, ЩМА, асфальтобетонов на битумных вяжущих по PG, укрепленных грунтов).
- В базе материалов программы создана отдельная ветка **ПНСТ 542-2021**. Материалы по утратившей силу методике ПНСТ 265-2018 перенесены в ветку «Материалы слоев ДО, созданные пользователем» для поддержки старых проектов.
- 3. В документе доработана "Методика определения условий движения при назначении вида асфальтобетонной смеси по ГОСТ Р 58401.1 и 58406.2». Теперь при расчете суммарного числа приложений расчетной нормативной нагрузки АК-11,5 с учетом круглогодичного пользования расчетный срок службы асфальтобетона для слоев покрытия принимают до ремонта, для слоя основания до капитального ремонта в соответствии с ГОСТ Р 58861.

В программе расчеты по определению условий движения разделены с учетом расположения асфальтобетонных слоев в конструкции (рис. 1):

Результаты расчета:	
Асфальтобетонные смеси по	ГОСТ Р 58406.2
Слои покрытия	
Суммарное расчетное значение нагрузок, ед.	260084
Условия движения	легкие условия движения(Л) - до 0.5 млн приложений
Слои основания	
Суммарное расчетное значение нагрузок, ед.	630901
Условия движения	нормальные условия движения(H) - от 0.5 до 1.8 млн приложений

Расчет для слоев основания:

Вычисляем суммарное расчетное число приложений расчетной нагрузки:

$$\sum N_{p} = 0.7^{*}N_{p}^{*} \frac{q^{T}cn - 1}{q^{(T}cn - 1)^{*}(q - 1)} {}^{*}T_{p\partial z}^{*}k_{n} = 0.7^{*}179.41^{*} \frac{1.030^{24} - 1}{1.030^{(24 - 1)^{*}}(1.030 - 1)} {}^{*}365^{*}1.38 = 1103449 \text{ ed.}$$

$$z\partial e:$$

гое. Mg. - приведенная интенсивность, рассчитанная на Тсл = 24 лет количество расчетных дней в году Трдг, дней = 365 дней

Переводной коэффициент К рассчитывают по формуле.

$$K = (\frac{Q_i}{Q_{115}})^4 = (\frac{100}{115})^4 = 0.57$$

где:

Q₁₁₅ - одноосная нагрузка, 115 кН

Q_i - нормативная статическая нагрузка на ось, 100 кН

Количество приложений одноосных нагрузок, эквивалентных 115 кH, рассчитывают по формуле: $N_{115} = \sum N_D * K = 1103449 * 0.57 = 630901 ed.$

Рис. 1. Определение условий движения

4. Добавлена «Методика определения расчетных температур слоя и назначения допустимых к применению марок битумного вяжущего».

Для применения в расчетных конструкциях асфальтобетонных смесей на битумных вяжущих типа PG по ГОСТ P 58400.1 и 58400.2 реализован вспомогательный расчет, который осуществляется при добавлении в конструкцию асфальтобетонного слоя на битумном вяжущем PG (рис. 2).

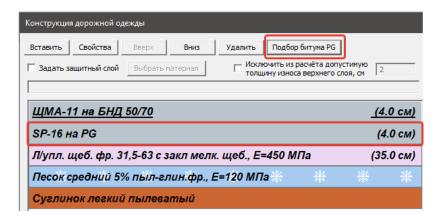


Рис. 2. Окно конструкции дорожной одежды с асфальтобетонным слоем по битуму РС

Для выполнения расчета, в соответствии с методикой, в программе требуется определить ближайшую к проектируемого участку автомобильной дороги метеостанцию путем выбора из доступных в списке, либо найти ближайшую по заданным координатам точки на дороге. Так же для определения исходных параметров необходимо указать прогнозируемую среднюю скорость движения на участке (рис. 3).

Расчет допустимых марок битумных вяжущих PG X		
Метеостанция		
Федеральный округ Центральный		
Регион Московская область		
Наименование Коломна 🔻		
Координаты 55° 08' N 38° 44' E		
Поиск ближайшей метеостанции по координатам		
Координаты N, E (0.00, 0.00) 54.432975, 37.506768		
Расстояние до метеостанции, км 93.60365 Найти		
T98.°C TB98.°C TM98.°C T50.°C TB50.°C TM50.°C 53.7 53.0 -32.3 46.9 45.8 -25.4		
Прогнозируемая средняя скорость, км/ч : Свыше 70		
Заданная надежность :		
Справка ОК Отмена		

Рис. 3. Окно параметров для подбора марки битума PG

Результатами расчетов являются подобранные марки битумных вяжущих PG, допустимые к применению в конструктивных слоях:

- фактическая марка PG X-Y (факт) по ГОСТ Р 58400.1;
- марка без учета фактической PG X-Y по ГОСТ Р 58400.1;
- допустимая марка с минимальным диапазоном эксплуатации и минимальным уровнем транспортной нагрузки PG X(Z)-Y по ГОСТ Р 58400.2;
- расчетные параметры слоя (значения модулей упругости асфальтобетона при расчете по

Вывод результатов расчета в соответствии с новой методикой в программе реализован в протоколе (рис. 4):

Результаты расчёта:		
Расчетные параметры для НСП	SP-16 на PG	
Прогнозируемые условия движения	экстремально тяжелые	
PG X-Y фактическая марка	PG 64.4-29.8 (факт)	
PG X-Y по ГОСТ 58400.1	PG 70-34 πο ΓΟCT 58400.1	
PG X(Z)-Y по ГОСТ 58400.2	PG 58(V)-34 πο ΓΟCT 58400.2	

Определение расчетных параметров для НСП (нижний слой покрытия) (Слой: SP-16 на PG)

```
Находим максимальную расчетную температуру НСП с надежностью 50%:
       T_{50} = T_{B50} - 15.14 * log_{10}(HB/45 + 1) = 45.8 - 15.14 * log_{10}(40.0/45 + 1) = 41.618°C
Находим максимальную расчетную температуру НСП с надежностью 98%:
       T_{98} = T_{B98} - 15.14 * log_{10}(HB/45 + 1) = 53.0 - 15.14 * log_{10}(40.0/45 + 1) = 48.818°C
Определяем значение коррекции в соответствии с таблицей A.2 ГОСТ Р 58400.3: k = 15.5°C
Определяем скорректированную максимальную расчетную температуру НСП с
надежностью 98%:
       T_{K} = T_{98} + K = 48.818 + 15.5 = 64.318°C
Определяем минимальную расчетную температуру НСП с надежностью 98%:
       T_{m98} = T_{m98} + F = -32.3 + 2.598 = -29.702°C
где F - коэффициент по таблице 2 ПНСТ 397:
       F = 6.26 * log_{10}(HB/25 + 1) = 6.26 * log_{10}(40.0/25 + 1) = 2.598°C
Результат назначения допустимых к применению в НСП битумных вяжущих:
       Определяем значение X = T_K + 0.1 = 64.318 + 0.1 = 64.418
       Определяем значение Y = T<sub>m</sub>98 - 0.1 = -29.702 - 0.1 = -29.802
       Получаем допустимую фактическую марку PG X-Y (факт) = PG 64.4-29.8 (факт)
```

Puc. 4. Результаты расчетов для подбора марок битума PG

Конструирование дорожных одежд

5. Добавлено условие в качестве требования к рабочему слою земляного полотна, при котором величина общего модуля упругости на поверхности рабочего слоя земляного полотна (при расчетной влажности грунта земляного полотна) в зависимости от ДКЗ должна быть не ниже определенных значений.

При несоблюдении требуемого условия программа будет подсвечивать значение модуля упругости с выводом подсказки о характере ошибки (рис. 5).

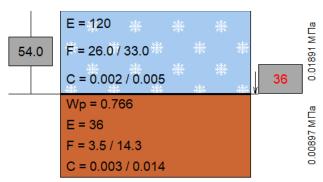


Рис. 5. Конструкция дорожной одежды. Модуль упругости на поверхности грунта рабочего слоя менее допустимого

Для увеличения общего модуля упругости на поверхности рабочего слоя в программе добавлена возможность в качестве грунтов замены добавлять грунты, укрепленные вяжущими.

Расчетные нагрузки и учет интенсивности движения

6. Введены расчетные диаметры отпечатка колеса с округлением до мм.

В окне программы Расчетная нагрузка добавлена отдельная ветка настроек ПНСТ 542-2021 с новыми диаметрами отпечатков колеса (рис. 6).

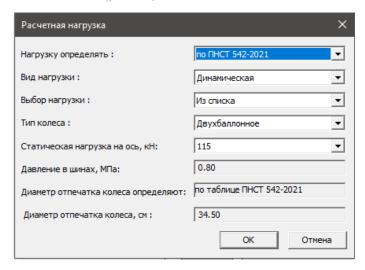


Рис. 6. Окно параметров расчетной нагрузки

7. Из ПНСТ 542-2021 исключена таблица коэффициентов приведения со ссылкой на отдельный нормативный документ ПНСТ 541 — 2021.

В соответствии с ним в программе была обновлена база данных автомобилей для учета коэффициентов приведения.

Расчет дорожных одежд на прочность

Расчет конструкции дорожной одежды по допускаемому упругому прогибу

- 8. В ПНСТ 542-2021 переработаны и уточнены номограммы для расчета общих модулей упругости на поверхности конструктивных слоев. Диапазон номограмм увеличен до 4 по оси абсцисс h/D.
- 9. В программе реализован контроль превышения запаса прочности более 5 % по одному из критериев (имеющего минимальное значение) при условии выполнения остальных критериев прочности (рис. 7).

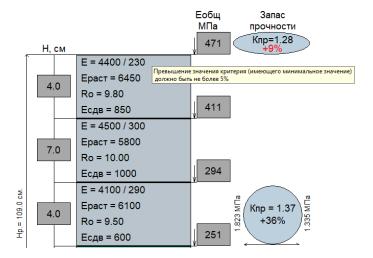


Рис. 7. Конструкция дорожной одежды. Запас прочности по минимальному критерию более 5%

Расчет конструкции дорожной одежды по условию сдвигоустойчивости

10.При определении предельного напряжения сдвига Тпр в грунте рабочего слоя и в малосвязных слоях добавлена формула для расчета величины средневзвешенного удельного веса конструктивных слоев, расположенных выше проверяемого слоя (усп.):

$$\gamma_{\rm cp} = \frac{\sum_{i=1}^{n} \gamma_i h_i}{\sum_{i=1}^{n} h_i}$$

11. Кардинально переработаны номограммы для определения активного напряжения сдвига ($\overline{\tau}_{\mathrm{H}}$) от единичной временной нагрузки. Количество номограмм увеличено до 48 шт., каждая из которых представлена для одного значения угла внутреннего трения. Диапазон охвата по величине h/D увеличен до 6.

Расчет конструкции дорожной одежды на сопротивление монолитных слоев усталостному разрушению от растяжения при изгибе.

- 12. Номограмма для определения растягивающего напряжения при изгибе разделена на две, которые должны использоваться в зависимости от условий работы в зоне контакта на границе слоев:
 - спаянный контакт при совместной работе слоев в зоне контакта;
 - гладкий контакт при свободном смещении слоев в зоне контакта.

В программе при расчете на изгиб монолитных слоев в методике нового строительства принимается гладкий контакт. Использование номограммы при условии спаянного контакта выполняется в методике усиления при условии устройства новых слоев из асфальтобетона поверх старых в существующей конструкции.

Примеры спаянного контакта на стыке существующей конструкции с новыми слоями:

• Вариант 1. Задана существующая конструкция. Требуемые условия: верхний слой существующей конструкции и нижний слой новой конструкции – слои из асфальтобетонной смеси (рис. 8).

Конструкция усиления		
<u>А16В на ПБВ 40</u>	<u>(4.0 см)</u>	
SP-22 на PG	(8.0 см)	
Существующая конструкция		
<u>А16В на ПБВ 40</u>	<u>(4.0 см)</u>	
SP-22 на PG	(8.0 см)	
Гравийная смесь С4 - 80 мм, Е=230 МПа	(30.0 см)	
Суглинок легкий пылеватый		

Рис. 8. Конструкция усиления. Устройство новых а/б слоев поверх существующих

Вариант 2. Задано значение измеренного модуля упругости. Требуется в диалоге Данные о дороге выбрать настройку Существующая конструкция – Конструкция с асфальтобетонным покрытием (рис. 9).

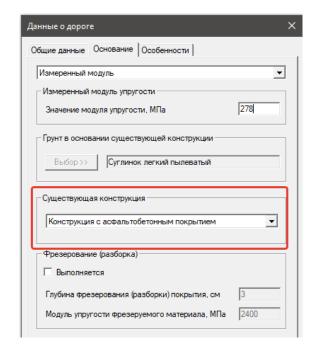


Рис. 9. Окно с настройками параметров существующей конструкции

Расчет монолитных оснований на изгиб

13. Откорректированы формулы для вычисления предельного напряжения на растяжение при изгибе с учетом усталостных явлений материалов (R_{np}) и коэффициента усталости (K_y).

Прочие доработки в программе, реализованные для методики ПНСТ 542-2021

- 14. Для продолжения выполнения расчетов проектов, созданных для ПНСТ 265-2018 по новой методике, добавлена возможность импорта параметров проектов ПНСТ 265-2018 в ПНСТ 542-2021 (Файл Импорт общих данных);
- 15.В окне **Климатические характеристики** для возможности учета глубины сезонного промерзания грунта, полученной методами непосредственного измерения при проведении инженерных изысканий, добавлен вариант **По данным измерений.**

При расчете конструкции на морозостойкость в таком случае не будет учитываться повышающий коэффициент запаса 1.38 для заданной величины (рис. 10).

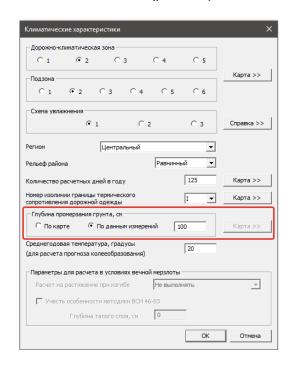


Рис. 10. Окно с настройками климатических характеристик

В то же время, в программе РАДОН осталась поддержка ПНСТ 265-2018, утратившего силу. При открытии проектов, созданных ранее на основе ПНСТ 265-2018, все расчеты, выбор материалов и расчетных автомобилей будут производиться в соответствии с данной методикой, но создать новые проекты уже не получится.

И как всегда, в выпуске учтены пожелания и предложения пользователей программы РАДОН, исправлены мелкие ошибки.